\qquad Date: \qquad Period: \qquad
\qquad

The Zeros of Polynomials

Activator: Zero Zappers Diagnostic

1. How many zeros does the polynomial function have?
2. What are the zeros of this polynomial function?
3. Write a possible equation for this graph.
4. Write the possible question in standard form.

Engage: Zero Zappers Desmos Activity

From the FUNDAMENTAL THEOREM OF ALGEBRA:

"An ' n th' degree polynomial function has exactly ' n ' zeros in the set of complex numbers, counting repeated zeros." Complex zeros can be Real zeros or Imaginary zeros. Imaginary zeros always come in pairs. Zeros of a function occur when the function is equal to zero. Therefore, if the zero is Real it will cross the x-axis at that number.

Write a summary about different functions and the possible number of real zeros below.

Mini-Lesson: Fundamental Theorem of Algebra (FTA)
First Check: How many roots should the polynomial have according to FTA?

a) $x^{3}+5 x^{4}-2 x+1$	b) $4 x^{2}+5 x+7$	c) $x^{6}-5 x^{3}-14$

A root by definition is a number when substituted for the variable yields an output of zero. Roots are sometimes called complex solutions. When the roots are repeated, we call this multiplicity.

Remember: If the root, a, is a real number then the following statements are equivalent: a is a zero of the function $f(x) \mid$ a is a solution to the equation $f(x)=0 \mid(x-a)$ is a factor of the polynomial $f(x) \mid[(a, 0) \text { is an } x \text {-intercept on the graph of } f]^{*}$
*For complex roots, the last statement will not be valid since we cannot graph complex numbers on a real number line.

Let's talk about the three different things that can happen at a real ROOT. The graph could:

Go straight through like a LINE,...	touch the x-axis and BOUNCE,...	or flatten out near the axis like a WIGGLE.
		The linear factor appears only once. (root has no multiplicity)
The linear factor appears an even number of times (root has even multiplicity: 2, 4, 6...)	The linear factor appears an odd number of times greater than or equal to 3 (root has odd multiplicity: 3, 5, 7...)	

any polynomial

- repeated roots will have linear factors with exponents on them.
- if the polynomial has complex roots, two linear factors will pair up to an irreducible quadratic with real coefficients.
- The degree can be determined from factored form by adding the exponents of every linear factor together. Please note $(x-0)$ just becomes x.

Use the factored forms below to give the degree of the polynomial function. Then use the zero product property to find all of the roots.

d) $p(x)=2 x(x+4)^{2}(x-7)$	e) $f(x)=(x+5)(x-3)(x+2)$	f) $g(x)=3(x-6)^{3}(x+1)$

