\qquad Date: \qquad Period: \qquad

Factoring Polynomials (3+ Degree)

Engage: Cubic Identities

1. What is the volume of a cube with side length equal to 4 ? \qquad
2. What is the volume of a cube with side length equal to x ? \qquad
3. Now we will determine the volume of a cube with side length equal to $x+4$.
a. First, use the rule for squaring a sum to find the area of the base of the cube.
b. Now use the distributive property to multiply the area of the base by the height $(x+4)$ and simplify your answer.
4. What is the volume of a cube with side length equal to $x+y$? Use the same steps as in Step 3 to determine this.
5. So the identify for a binomial cube is: $(x+y)^{3}=$ \qquad
6. Determine the following identity: $\quad(x-y)^{3}=$ \qquad
Explain or show how you came up with your answer.
7. Determine whether the cube of a binomial is equivalent to the sum of two cubes by exploring the following expressions:
a. Simplify $(x+2)^{3}$.
b. Simplify $x^{2}+2^{3}$
c. Is your answer to part a equivalent to your answer in part b? \qquad
d. Simplify $(x+2)\left(x^{2}-2 x+4\right)$
e. Is your answer to part b equivalent to your answer in part d? \qquad
f. Your answers to part b and d should be equivalent. They illustrate two more commonly used polynomial identities:

The Sum of Cubes (SOC):
The Difference of Cubes (DOC):
$a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
$a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$

	Difference of Cubes (DOC)$a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$		Steps \& Notes		$\begin{gathered} \text { Sum of Cubes (SOC) } \\ a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \end{gathered}$
	1. $x^{3}-8$ 2. $2000 x^{3}-686$	Perfect	Cube	1) Factor out the GCF, if any. 2) Find the cube root of the first term and the cube root of the last term. 2) Substitute cube roots into the formulas to the left. Pay attention to the signs. SOP. Be sure to simplify the squares, if necessary.	3. $27 x^{3}+1$ 4. $512 x^{3}+125 y^{3}$
		1	1		
		8	2		
		27	3		
		64	4		
		125	5		
		216	6		
		343	7		
		512	8		
		729	9		
		1000	10		
	Difference of Squares (DOS) and Sum of Squares (SOS) Revisited$\begin{gathered} \mathbf{a}^{2}-\mathbf{b}^{2}=(\mathbf{a}+\mathbf{b})(\mathbf{a}-\mathbf{b}) \\ \mathbf{a}^{2}+\mathbf{b}^{2}=(\mathbf{a}+\mathbf{b i})(\mathbf{a}-\mathbf{b i}) \end{gathered}$				
	5. $3 x^{4}-3$		When perfec plus p Reme even perfec Alway Be car squar strictly expre	to Use: Look for squares minus or erfect squares. mber variables with exponents are all squares. check for GCF $1^{\text {st }}$. reful using the sum of formula: this is for quadratic ssions.	6. $36 x^{4}-25 y^{2}$
	Quadratic Form (QF)$\mathbf{a x}^{2 \mathbf{n}}+\mathbf{b} \mathbf{x}^{\mathbf{n}}+\mathbf{c}=\left(\mathbf{m x ^ { n }}-\mathbf{p}\right)\left(\mathbf{k} x^{\mathbf{n}}-\mathbf{q}\right)$				
$\begin{gathered} \text { © } \\ \underset{\sim}{E} \\ \end{gathered}$	7. $x^{4}-4 x^{2}-45$ 8. $2 x^{4}+34 x^{2}+140$		When expre terms, consta it two expon Alway Facto it were make the co expon paren	to Use: A polynomial sion that has three one of the terms is a ant and one exponent times the other ent. check for GCF $1^{\text {st }}$. the expression as if a quadratic but then sure that you have rrect variable ent in the theses.	9. $2 x^{6}-x^{3}-15$ 10. $2 x^{8}-3 x^{4}-35$

