\qquad Date: \qquad Period: \qquad

Quadratic Regressions

Explore: Graphs Unmasked - Data Detective
Use the data sets below to construct quadratic functions that model the relationships between the variables. Label the equations for each data set and describe any key characteristics you observe from the graph. Remember to consider the vertex, axis of symmetry, maximum/minimum points, and y intercept when analyzing the quadratic functions.
Using Graphing Calculators

Data Set 1: Projectile Motion	
Time (seconds)	Height (meters)
0	5
1	8
2	9
3	5
4	

Steps:

Enter Data into L1 and L2 [stat, 1:edit]
Press [stat, >, 5: QuadReg]
To be able to graph the quadratic, enter Y1 [alpha, trace, enter] next to StoreReg

Quadratic Function Model: \qquad

Vertex: \qquad Maximum or Minimum? Axis of Symmetry: \qquad y-intercept: \qquad How might the characteristics above relate to the actual situation of projectile motion?

Using Desmos Graphing Calculator

Data Set 2: Population Growth	
Year	Population (thousands)
2000	250
2002	320
2004	420
2006	500
2008	550

Steps:

Click on the plus sign to add a table
Enter the data into the table under x 1 and y 1
In the next row type in $y_{1} \sim a x_{1}^{2}+b x_{1}+c$ for the quadratic regression.

Note: you can use any form of the quadratic to do this but standard form works best. Also, when dealing with years it helps to use $\mathrm{x}=0$ for the first year so your numbers won't be large.

Quadratic Function Model: \qquad
Vertex: \qquad Maximum or Minimum? Axis of Symmetry: \qquad y-intercept: \qquad
How might the characteristics above relate to the actual situation of population growth?

Complete the rest of the examples below using either method of quadratic regression:

Data Set 3: Profit Analysis	
Production (units)	Profit (dollars)
0	0
1	10
2	25
3	50
4	

Quadratic Function Model: \qquad
Vertex: \qquad Maximum or minimum?

Axis of symmetry: \qquad
y-intercept: \qquad

Data Set 4: Freefall Acceleration	
Time (seconds)	Distance (meters)
0	0
1	5
2	20
3	80
4	

Quadratic Function Model: \qquad
Vertex: \qquad Maximum or minimum?

Axis of symmetry: \qquad y-intercept: \qquad

Data Set 5: Sales Revenue	
onth	Revenue (thousands)
Jan	100
Feb	120
Mar	150
Apr	180
May	200

Quadratic Function Model: \qquad
Vertex: \qquad Maximum or minimum?

Axis of symmetry: \qquad
y-intercept: \qquad

Data Set 6: Temperature Change	
Time (hours)	Temperature (degrees Celsius)
0	20
1	18
2	15
3	12
4	10

Quadratic Function Model:

\qquad Vertex: \qquad Maximum or minimum?

Axis of symmetry: \qquad
y-intercept: \qquad

Are there any function models that surprised you? What do you notice about the rates of change in the tables and in the functions themselves?

