3.4 Completing the Square Notes

Some quadratic equations in the form of $ax^2 + bx + c = 0$ can be solved easily by factoring. For example, the equation $x^2 + 6x - 16 = 0$ can be factored easily to (x + 8)(x - 2) = 0 to give solutions of x = -8 and x = 2.

When a quadratic equation cannot be factored using integers, you have two options. You can use the quadratic formula of you can use a method called **completing the square**. When a = 1 and b is an even number, completing the square is the way to go (when a > 1, use the quadratic formula).

Example 1: Solve $x^2 + 8x - 10 = 0$ by completing the square.

Since it cannot be factored using integers, Write the equation in the form $ax^2 + bx = -c$	$x^2 + 8x - 10 = 0$ (undo) Move the Constant to right side
Find $\frac{1}{2}$ of b and add the square of that number $(\frac{b}{2})^2$ to both sides of the equation	Think $b = 8$ $\frac{1}{2}b = 4 \text{ and } 4^2 = 16$
Completing the Square Step	$x^2 + 8x = 10$ $x^2 + 8x + 16 = 10 + 16$
The left side is now a perfect square trinomial (PST), so factor it.	(x+4)(x+4) = 26
	$(x+4)^2=26$
Find the square root of each side.	$(x+4)^2 = 26$ $x+4 = \pm \sqrt{26}$
Solve for x	$x + 4 = \pm \sqrt{26}$ $x = -4 \pm \sqrt{26}$
Use a calculator to approximate the solutions, if necessary	$x \approx -4 \pm 5.099$
	$x \approx 1.099 \ or -9.099$

Important Note: It is important that if a question asks you to complete the square. You are finding half of the "b" and squaring it. This is the number that will complete the square.

년=6 What number will complete the square? $x^2 + 12x + n$ X2+10X+29=0 $X^2 + 10X + 25 = -29 + 25$ $X^2 + 8x + 16 = 4 + 16$ $(x+5)^2 = -4$ $(x+4)^2 = 20$ $\sqrt{(x+5)^2} = \pm \sqrt{-4}$ V(X+4)2 = 1/20 X+4 = ± 25 x+5 = ±2i x = -5 + 2iX=-4+215 글=-1 4 special ** because 4x2+24x+37=0 $a \neq 1$ X2-2X+ 1 = 33+1 dividebya $X^2 + 6x + 37 = 0$ -21(x-1)2 = 34 X=1+J34 X=1±\34 X+3 = ± +i ×=-3±1