\qquad Date: \qquad Period: \qquad

___ Exponential and Logarithmic Equations HOMEWORK

Directions: Please show your work for each problem in the boxes provided or on a separate sheet of paper.

For questions 1-2, use the properties of logarithms to expand the logarithmic expression.

1) $\ln 5 A^{3}$	2) $\log _{3}\left(\frac{B}{c}\right)$
For questions 3-4, use the properties of logarithms to condense the logarithmic expressions.	
3) $5 \log _{3} x+8 \log _{3} w$	4) $\frac{1}{3} \log _{2} 7-\log _{2} Y$

For questions 5-8, solve the exponential and logarithmic equations below using one-to-one properties.

5) $3^{x+3}=9^{x-2}$	6) $4^{x-3}=\frac{1}{16}$
7$) \log (5 x+1)=\log (2 x+3)+\log 2$	8) $\log _{8}(3 x+10)=\log _{8}(4 x+5)$

For questions 9-12, solve the exponential and logarithmic equations below using inverse properties. Give your answers exactly and in approximate form rounded to three significant figures, if possible.
9) $13^{x}=93$

$$
\text { 10) }-8\left(14^{n}\right)+1=-41
$$

11) $\log _{6}(-3 n)=-2$
12) $\log _{4}(x-3)+\log _{4}(x+3)=2$
13) Explain the relationship between the decay formula $N=N_{0}(1+r)^{t}$ and the formula for determining half-life of a substance, $N=N_{0}\left(\frac{1}{2}\right)^{\frac{t}{h}}$.
14) The intensity of light I decays over time t according to the equation $I=I_{0} \cdot e^{-k t}$, where I_{0} is the initial intensity and k is a constant. If the intensity becomes half $\left(\frac{I_{0}}{2}\right)$ after 5 hours $(t=5)$, find the value of k.
15) The half-life of Arsenic-74 is 17.5 days.
a) If 4 grams of Arsenic-74 are present in a body initially, how many grams are present 90 days later?
b) How long will it take for the there to be less than 0.01 grams of Arsenic- 74 in the body if 4 grams were present initially?
