\qquad Date: \qquad Period: \qquad

___ Exponential \& Logarithmic Equations

Activator: One-to-One Property Exponential Equations
Some exponential equations can be solved using the one-to-one property stated below:

$$
\text { If } b^{m}=b^{n} \text {, then } m=n
$$

Use this property and the properties of exponents to solve the exponential equations in the following examples.

1. $5^{3 x}=5^{7 x-2}$
2. $\frac{1}{8}=4^{3 x+1}$

Let a and b be real numbers and let m and n be integers.

QUOTIENT OF POWERS PROPERTY
POWER OF A QUOTIENT PROPERTY
PRODUCT OF POWERS PROPERTY
POWER OF A POWER PROPERTY
POWER OF A PRODUCT PROPERTY
negative exponent property
ZERO EXPONENT PROPERTY
4. $9^{y+2}=27^{4 y-2}$
2. $9^{-3 x}=3^{6}$
5. $e^{2 x}=e^{3 x} \cdot \frac{1}{e^{2}}$

Engage: Properties of Logarithms
Just like there are properties of exponents, there are also properties of logarithms. Some of them stem directly from a specific exponent property.
The Basic Properties

Related Exponent Property	Name of Logarithm Property	Property	Example 1	Example 2
	Argument of b	$\log _{b} b=1$	$\log _{14} 14=$	$\ln e=$
	Argument of 1	$\log _{b} 1=0$	$\log 1=$	$\log _{32} 1=$

The Main Properties: Note these properties are used to 'expand' and 'condense' logarithmic expressions.

Related Exponent Property	Name of Logarithm Property	Property	Example 1	Example 2
Product of Powers	Product Property	$\log _{b}(u \cdot v)=\log _{b} u+\log _{b} v$	Condense: $\log _{5} 6+\log _{5} 7=$	Expand: $\log _{2} 63=$ Quotient of PowersQuotient Property
$\log _{b}\left(\frac{u}{v}\right)=\log _{b} u-\log _{b} v$	$\log _{4} 84-\log _{4} 12=$	$\log 9=$		
Power of a Power	Power Property	$\log _{b} u^{k}=k \log _{b} u$	$2 \log _{3} 8=$	Condense:

Let's look at some more examples:

Expanding Logarithmic Expressions

Expand each expression as a sum and/or difference of logarithms. Express powers as factors.
6) $\log _{a}\left(u^{2} v^{3}\right), u>0, v>0$
7) $\log _{2}\left(\frac{x^{3}}{x-3}\right), x>3$

Condensing Logarithmic Expressions

Condense each expression into a single logarithm.
8) $3 \log _{5} u+4 \log _{5} v$
9) $2 \log _{b}\left(5 x^{3}\right)-\frac{1}{2} \log _{b}(2 x+3)$

| | Order
 Quotient Rule
 Product Rule
 Power Rule |
| :--- | :---: | :---: |

Some logarithmic equations can be solve using one-to-one properties of logarithms. If you can write both sides of the equation as a single logarithm with the same base then you can use the one-to-one property (for logarithms), that says,

$$
\text { If } \log _{b} m=\log _{b} p \text {, then } m=p
$$

Special Note: Unlike exponential equations, you will have to check the solutions to logarithmic equations. The domain of logarithms is not all real numbers. Extraneous solutions make the argument of any logarithm (in the original equation) less than or equal to zero.

10) $\log _{2} 2 x=\log _{2} 100$	11) $\ln (x+4)=\ln 7$
12) $\log _{7} 3+\log _{7} x=\log _{7} 32$	

When you want to solve exponential and logarithmic equations where both sides cannot be written as the same base (exponential equations) or there aren't logarithms on both sides of the equation (logarithmic equations), you will need to use inverse properties, we will talk about this in the next lesson.

