\qquad Date: \qquad Period: \qquad
\qquad Investigating Exponential \& Logarithmic Functions
Engage: Paper Folding

1) Take a large rectangular sheet of paper and fold it in half. You now have two equal-sized sections each with an area that is half the original area. Fold the paper in half again.
a. How many sections of paper do you have?
2) Continue this process until you cannot fold the paper anymore. Fill in the table below as you go.

Number of Folds	0	1	2	3	4	5
Number of Sections						
Area of each section compared to original paper area						

3) On graph paper let the horizontal axis represent the number of folds. Let the vertical axis represent the number of sections. Plot the points (\# of folds, \# of sections).
a. Does it make sense to connect these points with a smooth curve? Why or why not?
b. Is the relationship between the number of folds and the number of sections a function? Why or why not?

c. What is the domain of this function?
d. Write the function f for the number of sections of paper you will have after x folds.
e. Use your function to determine the number of sections you would have if you were able to fold the paper 15 times.
f. The function f is an example of exponential growth. What do you notice about the table, equation, and graph of an exponential growth function?
4) Next, plot the points (\# of folds, section area). Let the horizontal axis represent the number of folds; let the vertical axis represent the area of the section created.
a. Does it make sense to connect these points with a smooth curve? Why or why not?
b. Is the relationship between the number of folds and the area of a section a function? Why or why not?

c. What is the domain of this function?
d. Write the function g for the section area you will have after x folds.
e. Use your function to determine the area of a section as compared to the area of the original paper if you were able to fold the paper 15 times.
f. The function g for the area of a section is an example of exponential decay. What do you notice about the table, equation, and graph of an exponential decay function?
5) Now what would the inverse function of $f(x)$ and $g(x)$ look like?

How are these functions going to be defined? They are going to be defined using logarithms.
Logarithmic functions are inverses of exponential functions. In fact, the definition of a logarithm is tied to the definition of an exponential expression as such:

$$
b^{k}=a, \text { if and only if } \log _{b} a=k
$$

This definition can be used to help find inverses of exponential and logarithmic functions algebraically and eventually solve equations.
6) What would be the equations for inverse functions of $f(x)$ and $g(x)$?

Now, let's talk about and practice some basic logarithm concepts:
A logarithmic expression has THREE PARTS: 1) the word log
The logarithm is not complete without all three parts.
2) the base
3) the argument

Some things to consider:

- You cannot evaluate a logarithm that has a ZERO or NEGATIVE argument.
- Some logarithms are impossible to find without a calculator.

However, there are two logarithms where the base is hidden (not written explicitly but implied):

The common logarithm (base 10)
$\log 120$

The natural logarithm (base e)

$\ln 15$

These are also the logarithms that are on the face plate of the graphing calculator.

Write each equation in exponential form.		Write each equation in logarithmic form.		
a) $\log _{3} 9=2$	b) $\log _{4}\left(\frac{1}{16}\right)=-2$	c) $8^{\frac{4}{3}}=16$	d) $12^{1}=12$	
Evaluating Logarithms (No Calculator)				

e) $\log _{2} 64$	f) $\log 100$	g) $\log _{64} 4$	h) $\log _{9} \frac{1}{81}$
Evaluating Logarithms (Calculator)			
i) $\log _{2} 54$	j) $\log 294$	k) $\log _{4} 136$	please note on an older version of the calculator or handheld calculator, you must use change of base formula to evaluate: $\log _{b} a=\frac{\ln a}{\ln b}=\frac{\log a}{\log b}$

