Compositions of Functions (continued)

Composition of Functions is just another operation like adding, subtracting, multiplying and dividing.

Please note	the notations	for adding.	subtracting.	multiplying	and divid	ina functions:
			east acting,		,	

Operation	Add	Subtract	Multiply	Divide
0	Combine the	Distribute the minus	Distribute or FOIL	Write a fraction with
Vhat to Do	like terms of the to every term in the		based on the number	the two expressions.
	expressions	second function; then	of terms multiplying.	
>	together.	combine like terms.	Simplify.	
	f + g	f - g	gf	$\frac{g}{f}$
Notations	(f+g)(x)	(f-g)(x)	$(g \cdot f)(x)$	$\left(\frac{g}{f}\right)(x)or(g \div f)(x)$
	f(x) + g(x)	f(x) - g(x)	$g(x) \cdot f(x)$	g(x)
				f(x)

The notation for compositions are f(g(x)) or $(f \circ g)(x)$. Notice how the circle is <u>open</u> between the two function letters.

1) Suppose f(x) = 3x - 5, $g(x) = x^2$, $h(x) = 4x^3 + 7$ b) Find $(g \circ h)(1)$ a) Find f(g(2))

Suppose $f(x) = 2x + 3$ and $g(x) = -4x^2 + 12$ and $h(x) = x^2 + 5x$. Find the compositions.				
a) $f(g(x))$	b) $g(f(x))$			
c) $(h \circ f)(x)$				

5) The price p, in dollars of a certain product and the quantity x sold follow the demand equation

$$p = -\frac{1}{4}x + 100 \quad 0 \le x \le 400$$

Suppose that the cost C, in dollars, of producing x units is

$$C = \frac{\sqrt{x}}{25} + 600$$

Assuming that all items produced are sold, find the cost C as a function of the price p.

[Hint: solve for x in the demand equation then form the composite function]