\qquad Date: \qquad Period: \qquad
_Compositions of Functions (continued)
Composition of Functions is just another operation like adding, subtracting, multiplying and dividing.
Please note the notations for adding, subtracting, multiplying and dividing functions:

Operation	Add	Subtract	Multiply	Divide
$\begin{aligned} & \stackrel{0}{+} \\ & \stackrel{0}{0} \\ & \stackrel{1}{3} \end{aligned}$	Combine the like terms of the expressions together.	Distribute the minus to every term in the second function; then combine like terms.	Distribute or FOIL based on the number of terms multiplying. Simplify.	Write a fraction with the two expressions.
$\begin{aligned} & \text { n } \\ & .0 \\ & \stackrel{0}{0} \\ & \stackrel{4}{0} \\ & \mathbf{Z} \end{aligned}$	$f+g$	$f-g$	$g f$	$\frac{g}{f}$
	$(f+g)(x)$	$(f-g)(x)$	$(g \cdot f)(x)$	$\left(\frac{g}{f}\right)(x) \operatorname{or}(g \div f)(x)$
	$f(x)+g(x)$	$f(x)-g(x)$	$g(x) \cdot f(x)$	$\frac{g(x)}{f(x)}$

The notation for compositions are $\mathrm{f}(\mathrm{g}(\mathrm{x}))$ or $(\mathrm{f} \circ \mathrm{g})(\mathrm{x})$. Notice how the circle is open between the two function letters.

1) Suppose $f(x)=3 x-5$,
$g(x)=x^{2}$,
$h(x)=4 x^{3}+7$
a) Find $f(g(2))$
b) Find $(g \circ h)(1)$
2) Suppose you are given the table below.
a) Find $f(g(1))$

x	$f(x)$	$g(x)$
1	6	3
2	8	5
3	3	2
4	1	7

b) Find $(g \circ f)(3)$
3) Suppose you are given the graphs on the right. Find $f(g(1))$.

(a)

(b)
4)

Suppose $f(x)=2 x+3$ and $g(x)=-4 x^{2}+12$ and $h(x)=x^{2}+5 x$. Find the compositions.
a) $f(g(x)) \quad$ b) $g(f(x))$
c) $(h \circ f)(x)$
5) The price p, in dollars of a certain product and the quantity x sold follow the demand equation

$$
p=-\frac{1}{4} x+100 \quad 0 \leq x \leq 400
$$

Suppose that the cost C, in dollars, of producing x units is

$$
C=\frac{\sqrt{x}}{25}+600
$$

Assuming that all items produced are sold, find the cost C as a function of the price p .
[Hint: solve for x in the demand equation then form the composite function]

