GSE Alg. II
Name: \qquad Date: \qquad Per: \qquad
U1 Lesson 1.5 Guided Notes

Example 1 Square Roots of Negative Numbers
Simplify.
a. $\sqrt{-72}$
$\sqrt{-72}=\sqrt{-1 \cdot 2 \cdot 6^{2}}$
$=\sqrt{-1} \cdot \sqrt{2} \cdot \sqrt{6^{2}}$
$=\boldsymbol{i} \cdot 6 \cdot \sqrt{2}=6 \boldsymbol{i} \cdot \sqrt{2}$
b. $\sqrt{-108 b^{7}}$
$\sqrt{-108 b^{7}}=\sqrt{-1 \cdot 6^{2} \cdot b^{6} \cdot 3 b}$
$=\sqrt{-1} \cdot \sqrt{6^{2}} \cdot \sqrt{b^{6}} \cdot \sqrt{3 b}$
$=i \cdot 6 \cdot b^{3} \cdot \sqrt{3 b}$ or $6 b^{3} i \cdot \sqrt{3 b}$

Example 2 Products of Pure Imaginary Numbers
Simplify.

$$
\text { a. } \begin{aligned}
(-9 i) \cdot(-5 i) & \\
(-9 i) \cdot(-5 i) & =45 \boldsymbol{i}^{2} \\
& =45(-1) \\
& =-45
\end{aligned}
$$

b. $2 \sqrt{-72} \cdot(-3) \sqrt{-50}$

$$
\begin{aligned}
2 \cdot \sqrt{-72} \cdot(-3) \cdot \sqrt{-50} & =2 i \cdot \sqrt{72} \cdot(-3 i) \cdot \sqrt{50} \\
& =-6 i^{2} \cdot \sqrt{3600}
\end{aligned}
$$

$$
=-6 i^{2} \sqrt{60^{2}} \quad \text { Simplify }
$$

$$
=-6(-1)(60) \quad \text { Multiply }
$$

$$
=360 \quad \text { Simplify }
$$

Example 3 Equation with Pure Imaginary Solutions

Solve $4 \boldsymbol{x}^{2}+\mathbf{1 0 0}=\mathbf{0}$.

$$
\begin{aligned}
4 x^{2}+100 & =0 & & \text { Original equation } \\
4 x^{2} & =-100 & & \text { Subtract } 100 \text { from each side. } \\
x^{2} & =-25 & & \text { Divide each side by } 4 . \\
x & = \pm \sqrt{-25} & & \text { Square Root Property } \\
x & = \pm 5 i & & \sqrt{-25}=\sqrt{25} \cdot \sqrt{-1}
\end{aligned}
$$

Example 4 Equate Complex Numbers

Find the values of a and b that make the equation $a+4+(2 b-6) i=7+9 i$ true.
Set the real parts equal to each other and the imaginary parts equal to each other.
$a+4=7$
$a=3 \quad$ Subtract 4 from each side.
$2 b-6=9 \quad$ Imaginary parts $2 b=15 \quad$ Add 6 to each side. $b=7.5 \quad$ Divide each side by 2.

Example 5 Add and Subtract Complex Numbers

GSE Alg. II
Name: \qquad Date: \qquad Per: \qquad
U1 Lesson 1.5 Guided Notes

Simplify.

a. $(-7+5 i)+(12+3 i)$
$(-7+5 i)+(12+3 i)$ $=(-7+12)+(5+3) i$ $=5+8 i$
Commutative and Associative Properties Simplify.
b. $(6+3 i)-(-1-4 i)$
$(6+3 i)-(-1-4 i)$
$=[6-(-1)]+[3-(-4)] i$
Commutative and Associative Properties $=7+7 i$ Simplify.

Example 6 Multiply Complex Numbers

ELECTRICITY In an AC circuit, the voltage E, current I, and impedance Z are related by the formula $E=I \cdot Z$. Find the voltage in a circuit with current $2+5 j \mathrm{amps}$ and impedance $8-3 j$ ohms.

$$
E=I \cdot Z \quad \text { Electricity formula }
$$

$$
\begin{aligned}
& =(8-3 j)(2+5 j) \\
& =8(2)+8(5 j)+(-3 j)(2)+(-3 j)(5 j) \\
& =16+40 j-6 j-15 j^{2} \\
& =16+34 j-21(-1) \\
& =37+34 j
\end{aligned}
$$

$$
\begin{aligned}
& I=8-3 j, Z=2+5 j \\
& \text { FOIL } \\
& \text { Multiply. } \\
& j^{2}=-1 \\
& \text { Add. }
\end{aligned}
$$

The voltage is $37+34 j$ volts.

Example 7 Divide Complex Numbers

Simplify.

$$
\begin{aligned}
& \text { a. } \frac{-2}{3+5 i} \\
& \text { b. } \frac{6-7 i}{3 i}
\end{aligned}
$$

