GSE Alg. II		
Name:	Date:	Per:
U1 Lesson 1.5 Guided Notes		

Example 1 **Square Roots of Negative Numbers** Simplify.

a.
$$\sqrt{-72}$$

 $\sqrt{-72} = \sqrt{-1 \cdot 2 \cdot 6^2}$
 $= \sqrt{-1} \cdot \sqrt{2} \cdot \sqrt{6^2}$
 $= i \cdot 6 \cdot \sqrt{2} = 6i \sqrt{2}$
b. $\sqrt{-108b^7} = \sqrt{-1} \cdot 6^2 \cdot b^6 \cdot 3b$
 $= \sqrt{-1} \cdot \sqrt{6^2} \cdot \sqrt{b^6} \cdot \sqrt{3b}$
 $= i \cdot 6 \cdot b^3 \cdot \sqrt{3b} \text{ or } 6b^3i\sqrt{3b}$

Example 2 **Products of Pure Imaginary Numbers** Simplify.

a. $(-9i) \bullet (-5i)$	
$(-9i) \bullet (-5i) = 45i^2$	Multiply.
=45(-1)	$i^2 = -1$
=-45	Simplify.

b.
$$2\sqrt{-72} \cdot (-3)\sqrt{-50}$$

 $2\sqrt{-72} \cdot (-3)\sqrt{-50} = 2i\sqrt{72} \cdot (-3i)\sqrt{50}$
 $i = \sqrt{-1}$
 $= -6i^2\sqrt{3600}$
 $= -6i^2\sqrt{60^2}$
 $= -6(-1)(60)$
 $= 360$
Simplify.

Equation with Pure Imaginary Solutions Example 3 Solve $4x^2 + 100 = 0$. 4100 = 0Original equation $4x^2 = -100$ Subtract 100 from each side. $x^2 = -25$ Divide each side by 4. $x = \pm \sqrt{-25}$ Square Root Property $4x^2 + 100 = 0$ $\sqrt{-25} = \sqrt{25} \cdot \sqrt{-1}$

 $x = \pm 5i$

Example 4 **Equate Complex Numbers** Find the values of *a* and *b* that make the equation a + 4 + (2b - 6)i = 7 + 9i true.

Set the real parts equal to each other and the imaginary parts equal to each other.

a = 3 Subtract 4 from each side. $2b = 15$ Add 6 to e	ach side. h side by 2
a = 3 Subtract 4 from each side. $2b = 15$ Add 6 to e	ach side.
	and the second second
a+4=7 Real parts $2b-6=9$ Imaginary	parts

Example 5 Add and Subtract Complex Numbers

GSE Alg. II		
Name:	Date:	Per:
U1 Lesson 1.5 Guided Notes		

Simplify.

a. (-7 + 5i) + (12 + 3i) (-7 + 5i) + (12 + 3i) = (-7 + 12) + (5 + 3)i = 5 + 8ib. (6 + 3i) - (-1 - 4i) (6 + 3i) - (-1 - 4i) = [6 - (-1)] + [3 - (-4)]i= 7 + 7i

Commutative and Associative Properties Simplify.

Commutative and Associative Properties Simplify.

Example 6 Multiply Complex Numbers

ELECTRICITY In an AC circuit, the voltage *E*, current *I*, and impedance *Z* are related by the formula $E = I \cdot Z$. Find the voltage in a circuit with current 2 + 5j amps and impedance 8 - 3j ohms.

$E = I \cdot Z$	Electricity formula
=(8-3j)(2+5j)	I = 8 - 3j, Z = 2 + 5j
= 8(2) + 8(5j) + (-3j)(2) + (-3j)(5j)	FOIL
$= 16 + 40j - 6j - 15j^{2}$	Multiply.
= 16 + 34j - 21(-1)	$j^2 = -1$
= 37 + 34j	Add.
be veltage is 27 + 24 i velta	

The voltage is 37 + 34j volts.

Example 7 Divide Complex Numbers Simplify.

a. $\frac{-2}{3+5i}$	b. $\frac{6-7i}{3i}$		
$\frac{-2}{3+5i} = \frac{-2}{3+5i} \cdot \frac{3-5i}{3-5i}$	3 + 5 <i>i</i> and 3 – 5 <i>i</i> are conjugates.	$\frac{6-7i}{3i} = \frac{6-7i}{3i} \cdot \frac{-3i}{-3i}$	Multiply by $\frac{-3i}{-3i}$.
$=\frac{-6+10\boldsymbol{i}}{9-25\boldsymbol{i}^2}$	Multiply.	$=\frac{-18i+21i^2}{-9i^2}$	Multiply.
$=\frac{-6+10i}{34}$	<i>i</i> ² = -1	$=\frac{-21-18i}{9}$	<i>i</i> ² = -1
$=-\frac{3}{17}+\frac{5}{17}i$	Standard form	$=\frac{-7}{3}-2i$	Standard form